

The challenge

Beaufort Force 12 "Hurricane"

Turbines are designed to withstand hurricane force winds...

...but not to produce power when they happen

Wind Farm Energy vs Wind Speed

Example wind farm 5 x 2 MW wind turbines
Variation of energy with **long term annual mean** wind speed

In fact use different turbines on 6m/s and 9m/s sites so difference reduced a little

Importance of wind speed

Annual mean wind speed maps

Wind maps are a good starting point

To finance a € multi-million project wind maps insufficient

Need wind measurements

V17777377777	Sheltered terrain ²		Open plain ³		At a sea coast ⁴		Open sea ⁵		Hills and ridges ⁶	
m s ⁻¹	Wm^{-2}	$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	
> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800	
5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-1800	
4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200	
3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700	
< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400	

Onshore wind energy resource, as computed on a broad scale for the European Wind Atlas.

Wind direction measurements important too

Wind Rose:

Can be thought of as a wheel with spokes attached.

For each sector the wind is considered separately.

The length of a spoke shows the duration for which wind comes from this sector.

The thickness of a spoke shows the wind speed.

Used for design of wind farm

How long do measurements need to be?

A year will capture seasonal variations, but we could have a high or low wind speed year

How long do measurements need to be?

Wind speed range substantially reduced with 3 year periods

How long do measurements need to be?

Wind speed range further reduced with 5 year periods Conclude the longer the site data the better!

What if site data are of short duration?

Wind Farm site 2 years of data

National met station 10 years of data

Can use "correlation" approach to make site data set longer but..

Reference station data **must** be consistent

Two data sets **must** correlate well

Predicting wind speed variation a site

Turbines Mast

Site boundary

Computational flow modelling initiated from wind conditions at mast

Input - topography

Have predicted wind conditions at each turbine location

In this example annual mean wind speed varies by 30 % over site area

Output normalised wind speed

Predicting wake interactions between turbines

Wind farm energy production

Wind farm energy production

Short term forecasting

What is it?

Predicting what wind farms will produce in a few hours time to a few days time

Why do we need it?

To help integrate wind energy into the electrical grid

Inputs and outputs

Example Forecast Power Prediction Results

Hourly data 12 hours in advance

Forecasting for a portfolio of wind farms

Time series of power forecast for a portfolio of 7 wind farms at T+24h.

Short term forecasts are currently being used in countries with high wind energy penetrations to facilitate the integration of wind energy into the grid

